Segmenting breast cancerous regions in thermal images using fuzzy active contours

نویسندگان

  • Hossein Ghayoumi Zadeh
  • Javad Haddadnia
  • Omid Rahmani Seryasat
  • Sayed Mohammad Mostafavi Isfahani
چکیده

Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171 ± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845 ± 0.0619, 0.0710 ± 0.0381 mm respectively. Furthermore, the sensitivity in recognizing the thermal pattern in breast tissue masses is 85 % and its accuracy is 91.98 %.A thermal imaging system has been proposed that is able to recognize abnormal breast tissue masses. This system utilizes fuzzy active contours to extract the abnormal regions automatically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model for Diagnosing Breast Cancerous Tissue from Thermal Images Using Active Contour and Lyapunov Exponent

BACKGROUND The segmentation of cancerous areas in breast images is important for the early detection of disease. Thermal imaging has advantages, such as being non-invasive, non-radiation, passive, quick, painless, inexpensive, and non-contact. Imaging technique is the focus of this research. METHODS The proposed model in this paper is a combination of surf and corners that are very resistant....

متن کامل

Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poo...

متن کامل

Level set method for segmentation of infrared breast thermograms

Breast thermography is a physiological test that provides information based on the temperature changes in breast. It records the temperature distribution of a body using the infrared radiation emitted by the surface of that body. Precancerous tissue and the area around a cancerous tumor have higher temperature due to angiogenesis, and higher chemical and blood vessel activity than a normal brea...

متن کامل

Fuzzy Clustering and Active Contours for Histopathology Image Segmentation and Nuclei Detection

Histopathology imaging provides high resolution multispectral images for study and diagnosis of various types of cancers. The automatic analysis of these images can greatly facilitate the diagnosis task for pathologists. A primary step in computational histology is accurate image segmentation to detect the number and spatial distribution of cell nuclei in the tissue, along with segmenting other...

متن کامل

Spiral Bacterial Cell Image Analysis using Active Contour Method

Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-regions with continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors, often produce discontinuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016